Algorithms as a technology

Algorithms as a technology

Suppose computers were infinitely fast and computer memory was free. Would you have any reason to study algorithms? The answer is yes, if for no other reason than that you would still like to demonstrate that your solution method terminates and does so with the correct answer.If computers were infinitely fast, any correct method for solving a problemwould do. You would probably want your implementation to be within the boundsof good software engineering practice (i.e., well designed and documented), but you would most often use whichever method was the easiest to implement. Of course, computers may be fast, but they are not infinitely fast. And memory may be cheap, but it is not free. Computing time is therefore a bounded resource, and so is space in memory. These resources should be used wisely, and algorithms that are efficient in terms of time or space will help you do so.

Efficiency

Algorithms devised to solve the same problem often differ dramatically in their efficiency. These differences can be much more significant than differences due to hardware and software. As an example, in Chapter 2, we will see two algorithms for sorting. The first, known as insertion sort, takes time roughly equal to c1n2 to sort n items, where c1 is a constant that does not depend on n. That is, it takes time roughly proportional to n2. The second, merge sort, takes time roughly equal to c2n lg n, where lg n stands for log2 n and c2 is another constant that also does not depend on n. Insertion sort usually has a smaller constant factor than merge sort, so that c1 < c2. We shall see that the constant factors can be far less significant in the running time than the dependence on the input size n. 

Where merge sort has a factor of lg n in its running time, insertion sort has a factor of n, which is much larger. Although insertion sort is usually faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort’s advantage of lg n vs. n will more than compensate for the difference in constant factors. No matter how much smaller c1 is than c2, there will always be a crossover point beyond which merge sort is faster. For a concrete example, let us pit a faster computer (computer A) running insertion sort against a slower computer (computer B) running merge sort. 

They each must sort an array of one million numbers. Suppose that computer A executes one billion instructions per second and computer B executes only ten million instructions per second, so that computer A is 100 times faster than computer B in raw computing power. To make the difference even more dramatic, suppose that the world’s craftiest programmer codes insertion sort in machine language for computer A, and the resulting code requires 2n2 instructions to sort n numbers. (Here,c1 = 2.) Merge sort, on the other hand, is programmed for computer B by an average programmer using a high-level language with an inefficient compiler, with the resulting code taking 50n lg n instructions (so that c2 = 50). To sort one million numbers, computer A takes 

$\frac{2 · (10^6)^2 instructions}{10^9 instructions/second }= 2000 seconds$ ,

while computer B takes

$\frac{50 · 10^6 lg 10^6 instructions}{107 instructions/second} ≈ 100 seconds$

By using an algorithm whose running time grows more slowly, even with a poor compiler, computer B runs 20 times faster than computer A! The advantage of merge sort is even more pronounced when we sort ten million numbers: where insertion sort takes approximately 2.3 days, merge sort takes under 20 minutes. In general, as the problem size increases, so does the relative advantage of merge sort.

0 Response to "Algorithms as a technology"

Posting Komentar